If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t-36+t^2=0
a = 1; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·1·(-36)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*1}=\frac{-18}{2} =-9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*1}=\frac{8}{2} =4 $
| r^2-14r+53=0 | | 6k+42=3(2k+13) | | (240/y+3)(y-4y)=240 | | 9n-4=21 | | 3w-16=35 | | 22=n•900 | | 96=5u+16 | | X/2+x/5=91 | | -2-3v=-17 | | 5x-35-110=180 | | 3x+2+x=16 | | 3(-7x+3)=-54 | | (x)=2/3x^2/3 | | 3(-7x+3=-54 | | -3+4t=29 | | -9a+8a+26a-4a=20 | | -5(9+x)=15 | | k-2=23 | | 3(4+6x)=120 | | -6c+-5c-3c+12c+3=-17 | | (y+3)(240y-1)=240 | | -6c+-5c−3c+12c+3=-17-6c+-5c−3c+12c+3=-17-6c+-5c−3c+12c+3=-17-6c+-5c−3c+12c+3=-17 | | 3(5+5x)=-105 | | 2b2+10b+12=0 | | -6c+-5c−3c+12c+3=-17 | | 23+h-9=6 | | 11/2x=5 | | 4(x+1)=8(-4x-2)-4.2 | | 23+h-2=6 | | 19d-1=17 | | X+1=6x+51 | | 65t^2-25=0 |